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A ketogenic diet can mitigate SARS-CoV-2 induced
systemic reprogramming and inflammation
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The ketogenic diet (KD) has demonstrated benefits in numerous clinical studies and animal

models of disease in modulating the immune response and promoting a systemic anti-

inflammatory state. Here we investigate the effects of a KD on systemic toxicity in mice

following SARS-CoV-2 infection. Our data indicate that under KD, SARS-CoV-2 reduces

weight loss with overall improved animal survival. Muted multi-organ transcriptional repro-

gramming and metabolism rewiring suggest that a KD initiates and mitigates systemic

changes induced by the virus. We observed reduced metalloproteases and increased

inflammatory homeostatic protein transcription in the heart, with decreased serum pro-

inflammatory cytokines (i.e., TNF-α, IL-15, IL-22, G-CSF, M-CSF, MCP-1), metabolic markers

of inflammation (i.e., kynurenine/tryptophane ratio), and inflammatory prostaglandins, indi-

cative of reduced systemic inflammation in animals infected under a KD. Taken together,

these data suggest that a KD can alter the transcriptional and metabolic response in animals

following SARS-CoV-2 infection with improved mice health, reduced inflammation, and

restored amino acid, nucleotide, lipid, and energy currency metabolism.
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Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), the cause of coronavirus disease 2019 (COVID-19),
has irreversibly impacted human health and life

expectancy1. COVID-19 can lead to heterogeneous symptoms,
which span from asymptomatic infections to respiratory failure
with systemic toxicity and multi-organ dysfunction2–4. Observa-
tional studies of COVID-19 revealed that metabolic pro-
inflammatory comorbidities such as obesity and diabetes, are
associated with disease severity5,6. The interplay between meta-
bolism and the immune-inflammatory response can significantly
impact patient health during viral infection7–12. In particular, the
implementation of a ketogenic diet (KD) can be harnessed to
improve immunity and protect from inflammatory damage13.
The KD regimen has shown effective in enhancing immunity
across independent studies and in activating protective γδ
T cells14–16. Consequently, systemic reprogramming induced by
the KD may alter COVID-19 multi-organ toxicity17,18.

The ketogenic diet (KD) entails the intake of high-fat, low-
carbohydrate foods that activate the production of ketone bodies
i.e., β-hydroxybutyrate (BHB), acetoacetate (ACA) and acetone
(AC)19. In ketogenesis, lipids and proteins are used to support
cellular energy demands by providing metabolic intermediates
(ketone bodies) that function as fuel in lieu of glucose20,21.
Similarly to starvation and fasting, under KD peripheral fat is
mobilized towards the liver for ketogenic catabolism of fatty acids
via β-oxidation to acetyl-CoA, later converted in BHB, ACA, AC.
These are distributed to the peripheral tissues and central organs
to sustain energy demands while bypassing glucose oxidation
(Supplementary Fig. 1)22.

In our recent study, we demonstrated that SARS-CoV-2
induces severe systemic extrapulmonary toxicity and metabolic
reprogramming of vital organs in a murine model within 7 days
of infection23. Mice expressing the hACE2 transgene via adeno-
viral delivery and infected with SARS-CoV-2 showed suppression
of oxidative phosphorylation (OXPHOS) and of the tricarboxylic
acid cycle (TCA) at the transcriptional level, accompanied by
severe myocardial toxicity (decreased heart rate, myocardial
edema, and myofibrillar disarray). Key metabolites of the TCA
cycle showed directional decrease consistent with the transcrip-
tional response23. This phenotype was associated with profound
weight loss, massive peripheral fat mobilization, and morbidity
within 7 days from infection, which led us to hypothesize that
ketogenesis may affect the systemic response to SARS-CoV-2.

Here we sought to determine whether a KD may improve mice
health by reducing extrapulmonary systemic toxicity and
inflammation induced by infection with SARS-CoV-2. First, we
developed a murine model susceptible to viral infection that
recapitulates metabolic and transcriptional changes of systemic
ketosis. Next, we monitored mice health over one week from
infection under KD or control (chow) diet (CD) and performed
multi-organ transcriptional and metabolic profiling (Fig. 1a). Our
data indicate that a KD attenuates systemic toxicity following
SARS-CoV-2 infection. Reduced multi-organ transcriptional
reprogramming suggests that a KD anticipates adaptive systemic
changes induced by viral infection. We observed reduced metal-
loproteases and increased inflammatory homeostatic gene tran-
scription in the heart and liver. Further analysis performed on
mice serum revealed decreased pro-inflammatory cytokines (i.e.,
TNF-α, IL-15, IL-22, G-CSF, M-CSF, MCP-1), metabolic markers
of inflammation (i.e., kynurenine/tryptophane ratio), and pro-
inflammatory prostaglandins, indicative of reduced systemic
inflammation in animals infected under KD. Metabolomics pro-
filing also indicated decreased metabolism rewiring in the heart
and rescued amino acid, nucleotide, energy currency metabolites,
acyl-Coenzyme A pool (acyl-CoAs), and lipid precursors in all
tissues of KD fed mice. These changes were accompanied by a

restoration of mitochondrial fuel utilization driven by changes in
complex I/II ratios and respirasome assembly.

This study demonstrates that a KD can mitigate transcriptional
reprogramming following SARS-CoV-2 infection in mice, and
leads to reduced systemic toxicity/inflammation, rescued meta-
bolic abnormalities, and significantly better survival. Taken
together our observations provide a solid rationale to investigate
the efficacy of targeted dietary and metabolic interventions for
improved COVID-19 acute and potentially chronic (long
COVID) disease outcomes.

Results
A KD attenuates systemic toxicity in animals following SARS-
CoV-2 infection. We set out to determine whether a KD may
mitigate SARS-CoV-2 induced systemic toxicity and overall ani-
mal health. We used a murine model of SARS-CoV-2 systemic
toxicity we have recently described23. In this model, C57Bl/6 mice
are injected with adeno-associated vectors AAV-9-hACE2 or
AAV-9 GFP, followed by injection of vehicle or live SARS-CoV-2
virus. To determine the role of ketogenesis in affecting systemic
toxicity, animals were placed on a KD or CD ad libitum for 2
weeks. CD and KD composition by weight and energy values
(kcal) are reported in Fig. 1b. Briefly, the control group was fed a
fixed formula 18% protein rodent diet (Teklad Global 18% Pro-
tein Rodent Diet, Envigo), the KD group was exposed to a pur-
ified formula 16% protein and 67% in vegetable oils with trans
fatty acids for a ratio of fat to protein of 4.2 (Teklad Ketogenic
Rodent Diet TD. 190049, Envigo).

Serum BHB increased after two weeks of KD in hACE2-AAV-9
mice, while glucose levels remained unchanged (Supplementary
Fig. 2a). Prior to SARS-CoV-2 infection, both mice on CD and
KD maintained steady body weight (Supplementary Fig. 2b).
RNA-seq gene expression analysis of tissues harvested after
2 weeks of CD or KD (n= 3/group biologically independent
samples) showed distinct expression patterns in the liver as
opposed to the kidney and heart, as shown by principal
component analysis (PCA), PC1 (PC1: 53% total explained
variance) (Supplementary Fig. 3a). Genes involved in ketogenesis,
lipid β-oxidation and other PPARα targets were upregulated in
the liver, while genes involved in lipid synthesis (Fas, Scd-1,
Srebp-1c) were suppressed (Supplementary Fig. 3b). Gene
Ontology (GO) process pathway enrichment analysis of differ-
entially regulated genes (DEGs) confirmed the upregulation of
lipid catabolism, β-oxidation, and oxygen transport (Supplemen-
tary Fig. 3c). These data demonstrate robust ketogenesis in
animals following 2 week administration of KD versus CD.

Next, we infected AAV-9-hACE2 mice (n= 5/group biologi-
cally independent samples) with SARS-CoV-2 after two weeks of
exposure to a CD or KD diet (named “CD SARS-CoV-2” and
“KD SARS-CoV-2” groups, respectively). Uninfected AAV-9-
hACE2/vehicle mice under CD or KD diet were used as control
(named “CD” and “KD” groups, respectively).

Mice on a KD showed reduced food intake but similar calorie
intake over one week from infection, an observation consistent
with the different caloric content of the CD and KD pellets
(6.7 kcal/g for KD, 3.1 kcal/g for CD pellets). With the
progression of time from infection, both CD and KD groups
showed a significant decrease in food and calorie intake.
However, the implementation of a KD significantly reduced mice
body weight loss and spleen weight loss at day 5, 6 and 7 from
infection (Fig. 1c). This observation was in contrast to SARS-
CoV-2 induced body weight loss and spleen atrophy/reduction
recorded in our previous study23. No significant changes were
observed in serum glucose and BHB levels (Supplementary
Fig. 4). Over 7 days from infection, animals under a CD showed
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Fig. 1 A ketogenic diet improves mice health and rescues mice behavior in SARS-CoV2 infection. a Schematization of the study; (b) KD and CD
composition by weight and by calories; (c) effect of a KD on mice food and calorie intake (data obtained as average of mice cage consumption, cage n= 2),
body and spleen weight over 7 days after infection in C57Bl/6 male mice (14–17 weeks) (* significance p threshold 0.05, n= 5 for body weight and n= 9
for spleen weight biologically independent samples); (d) a KD rescues mice mobility and behavior after 7 days from infection (n= 5 biologically
independent samples); (e) distance traveled by each mouse over 17 s (in pixels, colors represents different mice) (right) and average distance traveled by
infected mice under CD or KD (*significance p threshold 0.05). (Created with BioRender.com).
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profound morbidity and severely restricted activity defined by
limited mobility and lethargic behavior, consistent with our
previous report23. Animals infected under KD demonstrated
rescued behavior with normal activity and mobility (Fig. 1d, e,
Supplementary Video 1 and 2). These data demonstrate that the
KD is beneficial to mice overall health and behavior following
SARS-CoV-2 infection.

A KD anticipates SARS-CoV-2 induced systemic transcrip-
tional reprogramming. The KD broadly reprograms gene
expression at system-level24. In our previous report, we showed
that SARS-CoV-2 induces profound multi-organ transcriptional
changes23. Therefore, we established whether a KD may affect
SARS-CoV-2 induced systemic reprogramming at the transcrip-
tional level by examining gene expression changes in extra-
pulmonary organs.

We performed multi-organ RNA-seq of mice tissues (n= 3/
group biologically independent samples) after two weeks of
exposure to a CD or KD and after one week from infection.
Uninfected AAV-9/hACE2+ /vehicle mice under CD or KD diet
regimen served as control (Fig. 1a).

PCA demonstrated distinct transcriptional patterns in unin-
fected and infected animals under KD and CD, with PC1
explaining 60%, 38%, and 43% of total variability between groups,
in the heart, liver, and kidney, respectively. Projected PC1 and
PC2 distances suggested that the KD induces transcriptional
changes in part similar to those caused by viral infection in all
tissues (Fig. 2a).

Paired analysis showed ~66% (619 genes), ~35% (392 genes)
and ~70% (741 genes) decrease in DEGs (adjp < 0.05, log2FC > 1)
in the KD infected group as opposed to CD infected animals in
the heart, liver, and kidney, respectively (Fig. 2b). DEGs between
infected KD and infected CD mice were 74, 45 and 16 in heart,
liver, and kidney, respectively, demonstrating similar overall
transcriptional programs. These data corroborate the hypothesis
that a KD shifts the transcriptional baseline of uninfected mice
towards changes induced by SARS-CoV-2.

Next, we compared DEGs due to the exposure to a KD in
uninfected animals (KD vs CD), with those changing because of
SARS-CoV-2 infection under CD (CD-SARS-CoV-2 vs CD)
(Fig. 2c). This analysis showed that 327 (heart), 499 (liver), and
341 (kidney) of the genes reprogrammed by the KD were also
affected during SARS-CoV-2 infection under CD. Of these,
approximately 99% showed consistent up or down regulation in
all tissues, indicating that 35% (heart), 45% (liver) and 32%
(kidney) of transcriptional changes induced by SARS-CoV-2 in
CD can be anticipated/primed through the implementation of a
KD. GO process enrichment analysis of shared DEGs pointed to
lipid and acetyl-CoA metabolism reprogramming across all
tissues with regulation of PPARα targets, such as Hmgcs2, Cidea,
Cidec, Ehhadh, Angptl4, Ucp3, Acot1-4, Slc27a1 and Fabp2
(Supplementary Data 1 and 2, Supplementary Fig. 5a). In the
liver, Acaca and Acsl6 were decreased, and Cyp7a1, Cyp8b1,
Cyp2b9 (steroid/cholesterol metabolism) were upregulated. RNA-
seq data also showed increased CPT1A in the liver and kidney
(Supplementary Fig. 5a).

Reversed-phase liquid chromatography (RP-LC) and untar-
geted mass spectrometry (MS) of polar lipids in SARS-CoV-2 vs
control tissues under CD confirmed increased medium and long
chain acyl-carnitines in the liver (Supplementary Fig. 5b).
Transcription factor regulatory network analysis of RNA-seq
data by the transcriptional factor (TF)-target interaction database
Transcriptional Regulatory Relationships Unraveled by Sentence-
based Text mining (TRRUST, v2) predicted 33, 64, and 49 TFs in
heart, liver, and kidney, respectively25,26. PPARα was consistently

predicted among the top 5 most significant TFs (Supplementary
Fig. 5c). Serum levels of BHB showed heterogeneous patterns in
infected mice (Supplementary Fig. 5d).

This evidence supports the finding that ketogenesis is activated
at the transcriptional level in extrapulmonary tissues following
SARS-CoV-2 infection. Consistently, we previously observed
peripheral fat mobilization, loss of adipose tissue, and reduced
adipocyte size in the same SARS-CoV-2 murine model of
infection23.

Taken together, these data demonstrate a systemic transcrip-
tional switch towards ketogenic metabolism after SARS-CoV-2
infection under CD and support the hypothesis that the
implementation of a KD prior to infection primes the system
by anticipating transcriptional adaptations induced by the virus.

A KD affects matrix remodeling and inflammatory response at
the transcriptional level in SARS-CoV-2. We compared tran-
scriptional changes in animals at the endpoint of our study, i.e.
mice infected under KD vs CD (KD-SARS-CoV-2 vs CD-SARS-
CoV-2). The endpoint of 7 days was primarily determined by the
moribund health state of the CD SARS-CoV-2 infected animals
that required euthanasia. This analysis detected 74 DEGs in the
heart (26 down-, 48 up-regulated), 45 in the liver (6 down-, 39
up-regulated), and 16 in the kidney (13 down-, 3 up-regulated)
(Fig. 2d, Supplementary Data 4).

In the heart, Nmrk2 was significantly downregulated in the
KD-SARS-CoV-2 group. This gene is a minimally expressed
nicotinamide riboside kinase isoform of Nmrk1 that has been
reported to increase during SARS-CoV-2 infection and is
involved in NAD+ synthesis through salvage pathways27.
Decreased Timp1, Thbs1, Tnc, Adam8, Chil3, Mmp-12 and
Mmp-3 transcription also suggested reduced matrix remodeling
associated with lower inflammation in the KD-SARS-CoV-2
group (Fig. 2d).

On the contrary, serum amyloid A1 and A2 (Saa1 and Saa2),
Igfbp1, Gdf2, Hnf1a, Soat2, Bco2, Amt, Acaca, and Esr1 were
upregulated in cardiac tissue in the KD infected mice.

In the liver, we detected increased Saa3, Cxc19, Lp1, Cxc110,
Ubd, Col3a1, Tlr2, Ifit3, Gbp2, and Gbp8 in the KD-SARS-CoV-2
group, implicated in interferon response, innate immunity, and
collagen remodeling. Cyp3a11 and Cux2 were instead reduced.
Saa3 and slightly significant Saa1 and Saa2 upregulation in
infected KD fed mice is not ascribable to the sole effect of a KD,
as shown by the downregulation of Saa1 and no significant
changes for other Saa2 and 3 in the liver of uninfected mice under
KD (Supplementary Data 5). Few significant changes were
detected in the kidney (Supplementary Data 4).

Network analysis of GO process enrichment in the heart predicted
the downregulation of defense response, eosinophil migration,
regulation of immune system process, leukocyte activation, wound
healing, and tumor necrosis factor superfamily cytokine production
while pointing to increased cholesterol and steroid biosynthesis, and
lipid metabolism (Supplementary Fig. 6 and Supplementary Data 6).
These data suggest that under KD, SARS-CoV-2 induced matrix
remodeling and inflammatory response are mitigated, in concert with
reduced NAD+ metabolism dysregulation and induced cellular lipid
and steroid metabolism.

A KD attenuates the cytokine storm and reduces systemic
inflammation during infection. To determine whether a KD
may alter serum markers of systemic inflammation during SARS-
CoV-2 infection, we measured the concentration of pro-
inflammatory cytokines in samples from mice infected under
CD or KD using the ProcartaPlex 1A Panel that enables the
analysis of 36 mouse pro-inflammatory cytokine and chemokines

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05478-7

4 COMMUNICATIONS BIOLOGY |          (2023) 6:1115 | https://doi.org/10.1038/s42003-023-05478-7 | www.nature.com/commsbio

www.nature.com/commsbio


in a single well by Luminex xMAP technology. Our data show
that interleukin-15 (IL-15, −2.5 FC), IL-22 (−8.5 FC), macro-
phage colony stimulating factor (M-CSF, −73.5 FC), granulocyte
colony-stimulating factor (G-CSF, −2.4 FC), monocyte che-
moattractant protein-1 (MCP-1, −1.9 FC) and tumor necrosis
factor-α (TNF-α −1.8 FC) were significantly decreased during
infection in mice fed a KD (Fig. 3a, b). Hematoxylin and eosin

(HE) tissue staining showed no histological abnormalities or
differences between the two groups (Fig. 3c).

Next, we performed untargeted RP LC-MS analysis in
electrospray negative and positive ionization modes (ESI+ /-)
to profile polar lipids in serum samples at day 7 from infection in
CD and KD fed mice. We detected a total of ~9500 metabolic
features in serum samples analyzed in ESI- mode, and a total of
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Fig. 2 A ketogenic diet anticipates SARS-CoV-2 induced systemic reprogramming and affects matrix remodeling and inflammatory homeostasis at the
transcriptional level. a Principal component analysis of differentially expressed genes (DEGs) in the heart, liver, and kidney indicates that a KD shifts
transcriptional profiles towards SARS-CoV2 induced changes; (b) number of significantly up and down-regulated genes in each tissue and Ven diagrams
showing the number of unique and shared genes dysregulated in SARS-CoV2 infection under CD or KD diet in distinct tissues; (c) heatmap showing
log2FC values for DEGs consistently induced by the KD and by viral infection in the control group (CD); (d) volcano plots showing DEGs in KD infected vs
CD infected mice (significantly down-regulated genes in blue, up-regulated genes in red); (adjp <0.05 and log2 FC > |1| for all panels, dotted lines indicate
significance and FC thresholds, n= 3/group biologically independent samples). (Created with BioRender.com).
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~14500 metabolic features in ESI+ mode. Of these, 360 (106
down, 254 up) and 110 (82 down, 28 up) metabolic features were
significantly dysregulated (p < 0.01, FC > 2) in ESI- in CD infected
or KD infected vs mock mice, respectively. In ESI+ , a total of
245 (93 up, 152 down) and 131 (10 up, 122 down) metabolic
features were significantly dysregulated in CD-SARS-CoV-2 or
KD-SARS-CoV-2 vs CD or KD mock mice, respectively. Further

accurate m/z match with reference lipid repositories and MS/MS
fragmentation pattern analysis led to the characterization of 10
metabolic features (Fig. 3d). These included 8 eicosanoids
(prostaglandins) mediators of acute inflammatory response with
higher FC in CD vs KD infected mice.

Hydrophilic interaction liquid chromatography (HILIC) MS
analysis confirmed lower serum levels of the kynurenine/
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tryptophane ratio, a metabolic index upregulated in inflammatory
states. RNA-seq data also showed decreased expression of
indoleamine 2,4-dioxysenase 2 (IDO2) in the heart in the KD-
SARS-CoV-2 group (Fig. 3e), consistent with decreased kynur-
enine/tryptophan ratios.

Taken together, these data suggest that a KD may be a
preventive non-invasive approach to decrease SARS-CoV-2
associated systemic toxicity through reduced inflammation.

A KD mitigates metabolic changes induced by SARS-CoV-2.
We next investigated whether a KD may affect metabolic changes
induced by the infection. Metabolite abundances were charted by
targeted metabolomics of central carbon metabolism and related
pathways by HILIC-MS after metabolite extraction from tissues
and serum.

To determine the effect of a KD on metabolite intra- and inter-
tissue associations, we computed Pearson correlation coefficients
for the CD and KD, CD-SARS-CoV-2 and KD-SARS-CoV-2
groups, for metabolites with significant changes in paired
univariate analysis in at least one tissue (i.e., in KD-SARS-CoV-2
vs KD or CD-SARS-CoV-2 vs CD) (Fig. 4a, b). As expected, a KD
increased positive and negative metabolite intra- and inter-organ
correlations (significance p < 0.05, Supplementary Data 7), with a
higher overall number of positive associations between the liver
and the heart and serum, and negative associations with the kidney
(Fig. 4b, upper panel). A KD diet also induces stronger positive
associations (higher correlation coefficient, lower p value) between
metabolites in the heart and liver, and within the kidney (Fig. 4b,
upper panel, clusters A, B, and C), and negative associations
between the kidney and all other tissues (clusters E and F).

In the CD-SARS-CoV-2, viral infection increases negative
associations between the liver and the kidney, while leaving
unchanged positive associations between the liver and other
tissues (Fig. 4a, circos plots). Stronger positive intra-tissue
correlations were observed in the heart (Fig. 4a, lower panel,
clusters A-C) and kidney (cluster D). In the KD-SARS-CoV-2
group, the infection led to weaker intra-tissue positive associa-
tions in the liver and kidney, as opposed to the KD mock group
(Supplementary Data 7). Negative associations were also weaker
than those observed in the KD mock group (Fig. 4b, lower panel).
This suggests that SARS-CoV-2 increases hepatic metabolic intra-
and inter-tissue associations, particularly with the heart and
kidney, and that a KD can mitigate these changes during
infection.

Next, we performed paired univariate analysis of metabolite
abundances, i.e. KD-SARS-CoV-2 vs KD and CD-SARS-CoV-2 vs
CD. Infection under KD led to reduced changes in heart and
serum, accompanied by increased metabolism reprogramming in
the liver and kidney (Fig. 5a). We detected a general increase in
currency metabolites, and of acyl-CoAs across all tissues in KD-
SARS-CoV-2 mice (Fig. 5b, metabolite abbreviations available in
Supplementary Data 8). Metabolites in nucleotide metabolism
were increased in the kidney, liver, and serum with a less
pronounced effect in the heart. This is particularly evident for A,

G and UMP in serum, which showed more than 5 log2FC relative
increase. IMP was increased in serum under KD (+4.4 log2FC)
while decreased in the CD group (−9 log2FC).

In all tissues, the KD rescues lipid precursors and amino acid
levels in infected mice (both depleted in animals infected under
CD). Tryptophan levels are unaffected in the KD group, an
observation consistent with reduced IDO activity, decreased
kynurenine/tryptophan ratio, and inflammation in KD infected
mice (Fig. 3).

Univariate analysis of metabolomics data for infected mice
under CD or KD at day 7 from infection (i.e., KD-SARS-CoV-2 vs
CD-SARS-CoV-2), showed no differences in heart and serum, the
latter showing increased P-creatine and R5P only. In the kidney
and liver, we detected increased nucleotides (dT, dU, orotate,
thymine, dA), amino acids (isoleucine, leucine, valine, glycine,
phenylalanine) and lipid precursors (HMG-CoA, CDP-choline,
carnitine) (Fig. 5c) in the KD infected group. This suggests that a
KD primes the myocardium to anticipate metabolic changes
induced by the virus by counteracting nucleotide, amino acid and
lipid metabolism alterations caused by the infection. PCA of
metabolites changing in at least one tissue/condition supports this
interpretation (Supplementary Fig. 7).

A KD rescues Complex I/II respiratory ratios and respiratory
supercomplexes (RSC) assembly. SARS-CoV-2 induced meta-
bolic reprogramming diverts mitochondrial fuel utilization away
from electron transport chain (ETC) complex II driven fatty acid
oxidation to glycolytic derived intermediates28. Since a KD can
enhance complex II activity29, we analyzed levels of respiratory
complexes by immunoblot, RSC by blue native electrophoresis
(BN-PAGE), and respiratory complex activity using respirometry
in frozen samples (RIFS)29. The KD per se did not alter levels of
respiratory complex I (CI) and complex II (CII) relative to
complex IV (CIV) in heart and liver tissues (Fig. 6a, b); however,
during SARS-CoV-2 infection, the KD increased relative CII
levels in the heart and trended to decrease relative CI in the liver
by 50% (p= 0.2) (Fig. 6a, b). This trend led to a significant
change in CI/CII level ratio in the liver (Fig. 6b).

Analysis of mitochondrial mass in the heart, liver, and kidneys
revealed that KD in non-infected mice induced an increase in
mitochondrial content. However, this increase was reverted under
SARS-CoV-2 infection (Supplementary Fig. 8a–c). RSCs or
respirasomes are the active conformation of assembled ETC
complex units (CI, CIII, and CIV) that are required for electron
transport and respiration. RSC assembly by BN-PAGE is a more
accurate indicator of respiratory activity than measuring
individual complex subunit levels by Western blot alone30. In
the C57Bl/6 murine model used in this study, RSCs are comprised
by CI+ CIII231. We did not observe significant changes in RSC
assembly levels in the heart in the KD-CoV-2 condition
(Supplementary Fig. 8d, e); however, in the liver, RSC assembly
was significantly reduced by almost 50% between the CD-SARS-
CoV-2 and KD-SARS-CoV-2 conditions (Fig. 6c).

Fig. 3 A ketogenic diet reduces markers of acute inflammation in SARS-CoV-2 infection. a Fold change of serum cytokines showing significant
concentration changes during infection under KD vs CD regimen (n= 8/group biologically independent samples, * for p < 0.05 and fold change > |1 | );
(b) serum concentration (pg/mL) of tumor necrosis factor-alpha (TNF-a) in CD- and KD-SARS-CoV-2 infected and mock mice; (c) Hematoxylin-Eosin
staining of heart, liver, kidney, and lung in CD864 and KD-SARS-CoV-2 mice (n= 6/group biologically independent samples); (d) untargeted RP-LC
analysis of serum showing up-regulation of retinoic acid and inflammatory lipid mediators (eicosanoids) in CD-SARS-CoV-2 infected mice, and
corresponding decrease under KD regimen (n= 5/group biologically independent samples, significance p < 0.05, fold change > |2 | , # indicates p > 0.05);
(e) kynurenine/tryptophane ratio metabolic marker of acute inflammation in serum (right) (* for p 0.05, n= 5/group biologically independent samples),
and SARS-CoV-2 induced upregulation of IDO2 (indoleamine-2,3-dioxygenase) in hearth (* for p 0.05 ang log2FC for gene expression > |1 | , n= 3/group
biologically independent samples).
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Fig. 4 SARS-CoV-2 induces distinct intra- and inter-tissue metabolism reprogramming in CD and KD mice. aMetabolite intra- and inter-tissue correlation
maps and circos representations of positive (pos, gray) and negative (neg, blue) inter-tissue correlations for CD uninfected (upper panel) and CD-SARS-CoV-2
mice (lower panel) at day 7 from infection; (b) metabolite intra- and inter-tissue correlation maps and circos representations of positive (pos, gray) and negative
(neg, blue) inter-tissue correlations for KD uninfected (upper panel) and KD-SARS-CoV-2 mice (lower panel) at day 7 from infection (average hierarchical
clustering of Pearson correlation matrix, red triangles/boxes highlight highly significant correlations, i.e. p < 0.05, n= 5/group biologically independent samples).
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In order to detect resulting functional differences in fuel
capacity we measured the respiratory activity of CI and CII
normalized by CIV in frozen tissue homogenates. In accordance
with our results probing for protein levels of complexes I and II in
the heart, the activity of CII was increased by ~65% in KD-SARS-
CoV-2 samples, whereas in the liver we observed a trend towards
decreased CI activity under KD-SARS-CoV-2 (62.4% decrease,
p= 0.15) (Fig. 6d). Curiously, in the heart, the KD alone mildly
but significantly caused reduced CI activity, which was not
reflected in a change in CII protein levels. In both heart and liver,
CI/II activity ratios were normalized to uninfected control
animals (Fig. 6e). Interestingly, in the kidney, we observed a
significant increase in CI activity by ~170% and a strong trend
towards increasing CII activity in KD-SARS-CoV-2 samples
(p= 0.08) (Supplementary Fig. 8f). Overall, these data indicate
restored CI/II ratios in the KD-SARS-CoV-2 group; however, in
the kidney, this was driven in the direction of increased CI/CII
activity as opposed to the heart and liver (Supplementary Fig. 8g)
(uncropped seahorse immunoblots available in Supplementary
Fig. 9).

Discussion
A KD has shown beneficial effects across numerous clinical stu-
dies and animal models of disease as a noninvasive means to
induce systems-level immune modulation and reduce
inflammation32,33. In our previous report, we showed that SARS-
CoV-2 infection causes multi-organ toxicity, body weight loss,
and spleen reduction. Animals showed severely reduced activity,
lethargic behavior, and profound morbidity, with mobilization of
peripheral fat storages23.

Here we show that the implementation of a KD two weeks
prior to infection reduces body weight loss, rescues reduction in
spleen size and mice activity with overall improved health. These
observations are in line with recent reports showing that a KD or
the administration of BHB is beneficial to mice survival following
SARS-CoV-2 or natural beta coronavirus (mCoV) infection
through restored immunity (increased CD4+ T and γδ
T cells)12,34. Similar findings were reported in the context of
influenza infection12. The observed increase in spleen weight may
be due to increased immune response and accumulation of
immune cells in spleen.

Fig. 5 A ketogenic diet counteracts metabolic changes induced by SARS-CoV-2 infection. a Biological classification of total altered metabolites in serum,
heart, liver and kidney (n= 5/group biologically independent samples, p < 0.05 and FC > |1.5 | ); (b) log2FC of metabolites showing significant changes in
paired analysis of CD-SARS-CoV-2 vs CD or KD-SARS-CoV-2 vs KD (indicated as CD and KD, respectively, n= 5/group biologically independent samples,
p < 0.05 and FC > |1 | ); (c) heatmap of log2 intensities for significant metabolites in KD-SARS-CoV-2 vs CD-SARS-CoV-2 mice for serum, kidney, and liver
(n= 5/group) biologically independent samples, p < 0.05 and FC > |1 | , no significant features in the heart. Metabolite abbreviations are reported in
Supplementary Data 8.
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The KD causes transcriptional reprogramming at the systems
level, with up-regulation of PPARα and its downstream
effectors35. Our data demonstrate that the implementation of a
KD in the uninfected group induces transcriptional changes that
resemble those detected following infection in the heart, liver, and
kidney. This indicates that a KD shifts the transcriptional baseline
toward adaptative changes induced by SARS-CoV-2 infection.
Indeed, 327 (heart), 499 (liver), and 341 (kidney) of genes
reprogrammed by the KD were consistently changed following
SARS-CoV-2 infection in the CD group, indicating that the KD
anticipates approximately 35% (heart), 45% (liver) and 32%
(kidney) of transcriptional reprogramming observed during
infection in CD.

To identify the pathways modulated across KD and SARS-
CoV-2 infection, we performed GO enrichment of shared DEGs.
This analysis predicted lipid and acetyl-CoA metabolism upre-
gulation in all tissues, with increased transcription of the PPARα
gene set. PPARα is the master regulator of lipid metabolism,
particularly in the liver. Its activation promotes fatty acid uptake
and catabolism through ketogenesis, fatty acid transport, and
mitochondrial β-oxidation. PPARα also increases the expression
of CPT1, which encodes for the carnitine palmitoyltransferase I
(CPR1) transporter of fatty acids inside the mitochondria as
carnitine conjugates (acyl-carnitines). We observed consistent up-
regulation of PPARα and downstream effectors in uninfected
animals under KD and in CD-SARS-CoV-2 mice. These data
indicate that ketogenesis is activated at the transcriptional level in
extrapulmonary tissues following SARS-CoV-2 infection, and are

consistent with our previous report showing loss of peripheral
adipose tissue, and reduced adipocyte size23. Increased acyl-
carnitine levels in the liver of infected mice under CD endorse
this interpretation. Serum BHB levels were highly heterogeneous
across infected mice. Similar results were reported in a recent
observational study of COVID-19 patients and in a murine model
of SARS-CoV-223,36.

Previous investigations of SARS-CoV-2 reported dysregulation
of NAD+ metabolism, increased systemic inflammation, and
matrix remodeling following infection37. In particular, SARS-
CoV-2 causes the dysregulation of NAD+ synthesis and utiliza-
tion, with increased expression of genes in the NAD+ salvage
pathway (Nmrk1 and 2), and striking increase of manyl non-
canonical mono(ADP-ribosylating) PARPs27. Our data show
decreased transcription of Nmrk2 in the heart of animals infected
under KD. With Nmrk1, Nmrk2 initiates nicotinamide riboside
(NR) conversion to NAD+ via NR phosphorylation to nicoti-
namide mononucleotide (synthesis of NAD+ through salvage
metabolism)38. In the heart, NAD+ is crucial to mitochondrial
homeostasis and oxidative stress and serves as cosubstrate for
sirtuin enzymes and poly(ADP-ribose) polymerases39. Therefore,
in cardiac tissues a KD can mitigate NAD+ salvage induced by
the virus38. This observation is supported by restored mito-
chondrial fuel utilization driven by changes in the CI/CII ratio
(seahorse analysis), and increased energy currency metabolites
(metabolomics analysis).

Our data also show decreased Timp1, Thbs1, Tnc, Adam8,
Chil3, Mmp-12 and Mmp-3 in the heart of animals infected under

Fig. 6 A ketogenic diet rescues Complex I/II respiratory ratios and respiratory supercomplexes assembly. a Immunoblots of complex I (Ndufb8),
complex II (Sdhb), complex IV (Mtco) subunits, and Tomm20 in heart (top) and liver (bottom). Whole membranes are displayed in Supplementary Fig. 8A;
(b) Immunoblot quantifications of complex I (left) and II (center) subunit levels normalized by complex IV and ratios of complex I/II levels (right) in the
heart (top) and liver (bottom) normalized to each CD condition. Graphs represent mean ± SEM of n= 3–4 biologically independent samples; (c)
Immunoblot of blue native gel electrophoresis stained for Uqcrc2 (top) and quantification of assembled CI+ CIII2 versus unassembled CIII2 respirasome
ratios in the liver normalized to each CD condition (bottom). Graphs represent mean ± SEM of n= 4 biologically independent samples; (d) Respiratory
activity of complexes I and II normalized by complex IV and each CD condition in the liver (left) and heart (right) measured by RIFS. Graphs represent
mean ± SEM of N= 5–10 biologically independent samples; (e) respiratory ratios of complex I/II in the heart (left) and liver (right). Graphs represent
mean ± SEM of n= 5–10 biologically independent samples. Statistical significance for pairwise comparisons in (b, c, d) was determined using unpaired
2-tailed Student’s t test or Mann–Whitney test where appropriate. Statistical significance of group comparisons in (e) was determined by One-way
ANOVA with Holm-Šídák’s multiple comparisons test. *= p < 0.05, **= p < 0.01. (Created with BioRender.com).
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KD. Timps encode for a family of glycoprotein inhibitors of
Mmps, which are released in response to cytokine flow to
maintain matrix equilibrium and cytokine shedding during
inflammation, and have been reported upregulated in SARS-
CoV-2 patients40. Tush decreased Timp1, Mmp-12 and Mmp-3
suggest reduced matrix remodeling and inflammation in the
infected KD group. Decreased Thbs1, Tnc, and Adam8 (matrix
remodeling and cell-matrix interaction), and Chil3 (stimulation of
immune function and inflammation) support this
interpretation41–43.

We further detected Saa1, Saa2, Igfbp1, Gdf2, Hnf1a, Soat2,
Bco2, Amt, Acaca (rate-limiting step in fatty acid synthesis), and
Esr1, increase in cardiac tissue of KD infected animals, and Saa1-
3 upregulation in the liver. Previous studies reported altered levels
of Saa1 and Saa2 following SARS-CoV-2 infection44–46. Saa1 and
Saa2 are induced by inflammatory cytokines (IL-1β, IL-6 and
TNF-α) in the liver. However, their extrahepatic role is poorly
understood. Recent evidence suggests that these proteins may
exert immunomodulatory and inflammatory homeostatic func-
tions, and inhibit TNF-α mediated apoptosis45.

Taken together, these data indicate that a KD mitigates SARS-
CoV-2 induced matrix remodeling and inflammation while
reducing NAD+ scavenging.

To validate this interpretation, we measured a robust panel of
markers of systemic inflammation in serum. We found that a KD
reduces pro-inflammatory cytokines (i.e., TNF-α, IL-15, IL-22, G-
CSF, M-CSF, MCP-1), metabolic markers of inflammation (i.e.,
kynurenine/tryptophane ratio), and inflammatory prostaglandins
in infected animals. RNA sequencing also showed decreased
IDO2 transcription in the heart. IDO enzymes catalyze the cat-
abolism of tryptophane to kynurenine under inflammatory sti-
muli, such as IFN-γ signaling. In physiologic conditions, IDO2 is
rarely expressed. However, IDO2, rather than the constitutively
expressed IDO1, has been shown associated with the accumula-
tion of downstream products of kynurenine metabolism and
inflammation in the lung, heart, and brain of deceased covid-19
patients47.

Previous investigations established increased serum cytokines
in COVID-19 patients (i.e., cytokine storm)48. Among these,
TNF-α, M-CSF, G-CSF have been proposed as predictors of
intensive care unit (ICU) requirements and lung injury49,50. A
further study demonstrated that TNF-α levels in serum can serve
as a prognostic marker of post-acute sequelae in COVID-19
patients (long covid)51. In addition, the kynurenine/tryptophan
ratio positively correlates with patient severity52,53. In this con-
text, our data suggest that a KD may improve patient health with
reduced risk of hospitalization and long covid47,54. On the con-
trary, a diet rich in carbohydrates may exacerbate the inflam-
matory response during infection.

Numerous studies corroborate the anti-inflammatory proper-
ties of a KD, e.g., in the context of cancer, epilepsy, and
neurodegeneration13,20,55,56. This has been linked with the inhi-
bition of NLRP3 by BHB in the inflammasome pathway57–59.
However, we did not detect significant transcriptional modulation
of the inflammasome under both CD and KD (Supplementary
Fig. 10). This and other discrepancies may be linked to limitations
intrinsic to the physiology of the in vivo model used in this study,
particularly in relation to differences in hACE2 human expression
in infected mice and humans, and to the use of the i.p. infection
route, which differs from the natural respiratory route in humans.

In our previous work, we observed suppression of OXPHOS
and of the TCA at the transcriptional level in infected animals23.
Independent investigations confirmed similar changes in central
carbon metabolism in cohorts of patients and in in vivo/in vitro
models of infection60–67. Our data indicate that a KD increases
hepatic metabolic associations with other tissues, a metabolic

adaptation also observed in the infected CD group. This suggests
that a KD anticipates the systemic metabolic rewiring induced by
the virus. Across all tissues, we detected increased energy cur-
rency metabolites, lipid precursors, amino acids, and acyl-CoAs.
Nucleotide metabolites were also increased in all tissues with a
slight change in the heart. Recent literature reported altered
amino acid and lipid precursors in plasma from COVID-19
patients, with metabolite levels correlating with disease severity
and risk of hospitalization, suggesting that the implementation of
a KD may improve patient health52,53,60,61,68–76. However, robust
follow-up clinical studies are needed to translate these findings
into clinical recommendations.

The KD has been shown to rewire mitochondrial metabolism
toward ketones and fatty acid oxidation-driven maximal
respiratory capacity29. We show that SARS-CoV-2 infection in
CD mice increases CI/II ratios in the heart and liver. The KD
normalizes these changes by regulating CII levels in the heart and
respirasome assembly in the liver. In the kidney, SARS-CoV-2
infection decreases CI/II ratios in CD, however; a KD normalizes
these ratios. Consistently, we detected rescued energy currency
metabolites. Overall, these data suggest that a KD mitigates
metabolic dysregulations induced by SARS-CoV-2 infection and
confirm the metabolic changes predicted at the
transcriptional level.

In summary, our investigation demonstrates that a KD can
reprogram and in part anticipate the transcriptional and meta-
bolic changes caused by SARS-CoV-2 infection, with improved
mice health, reduced inflammation, and rescued metabolism.

Methods
Animal care and use. All animal studies were approved by the
Animal Research Committee, University of California, Los
Angeles and conducted in compliance with all relevant ethical
regulations for animal testing. Male C57Bl/6 mice (000664,
Jackson Labs) (14–17 weeks) were housed in a room with con-
trolled temperature and humidity and fed standard chow diets
(T.2018.15, Envigo). AAV9-CMV-hACE2 (AAV-200183, Vector
Biolabs) viruses were purchased from Vector Biolabs. Animals
were injected intravenously with 100 µl injection containing
2 × 10 genomic copies of the virus. This model was previously
described23.

Biosafety. All works in this study involving live SARS-CoV-2
virus were approved by the University of California, Los Angeles
Institutional Biosafety Committee (IBC). All work with infectious
SARS-CoV-2 was conducted in UCLA performance-validated
BSL3 facilities, designed adhering to the guidelines recommended
by the Biosafety in Microbiological and Biomedical Laboratories
(BMBL), the U.S. Department of Health and Human Services, the
Los Angeles Department of Public Health (LADPH) and the
Centers for Disease Control and Prevention (CDC).

SARS-CoV2 viruses. SARS-CoV-2 (USA-WA1/2020), was
obtained from the Biodefense and Emerging Infections (BEI)
Resources of the National Institute of Allergy and Infectious
Diseases (NIAID). The virus was passaged in Vero-E6 cells
(ATCC) and viral stocks were stored at –80 °C. Virus titer was
determined by plaque assay using Vero E6 Cells.

Keto diet interventions. After 2 weeks of AAV-CMV-hACE2
injection, mice were fed with chow diet (T.2018.15, Envigo) or
ketogenic diet (TD.190049, Envigo) ad libitum for 2 weeks34.
Then animals were housed in BSL-3 facility for the duration of
the experiment (n= 5/cage) under the same chow/ketogenic diet.
200 μL of SARS-CoV2 (0.5 × 106 PFU/mL) was injected
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intraperitoneally to each animal. Cage food weight and individual
mouse body weight were recorded daily after SARS-CoV-2 virus
infection. Animals were euthanized at 7 days SARS-CoV-2
infection.

Animal movement analysis. Videos of mice infected under
chow/ketogenic diets were recorded for 17 s. Mice pixel coordi-
nates were obtained using Adobe After Effects. The tracking
software was used to export movement coordinates for each
mouse (tracker positioned between mice ears). Next, screen
coordinates (CS) were transposed into Cartesian (vertical reflec-
tion line = max (Y CS values) - min(Y CS values)/2 + min(Y CS
values), Y cartesian values=−1*(Y CS values - Vertical reflection
line) + Vertical reflection line). Keto mice x (length) cartesian
values and the modified keto mice Y (width) were set to start at
zero. Data were plotted in R Studio using the ggplot2 package,
distances traveled between video frames were computed using the
dist() function in R.

Histology. Tissues were fixed in 4% paraformaldehyde and sub-
sequently subjected to paraffin section preparation. Paraffin-
embedded tissues were sectioned at 5μm thickness and stained
with hematoxylin and eosin (HE staining). Images were taken
using Nikon Eclipse Ti2 microscopy (Nikon,USA) with DS-Ri2
brightfield camera.

Tissue and serum metabolomics. Sample preparation: for
metabolomic analysis of the heart, kidney, and liver of chow and
keto diet animals: 10 mg tissue was homogenized in 1 ml 80%
methanol and incubated for 30 min on dry ice. homogenate was
further vortexed and centrifuged at 15,000 × g for 15 min at 4 °C.
The supernatant was subsequently vacuum-dried for LC/MS.

For metabolic profiling of serum, 50 μL of serum was mixed
with 50 μL H2O and 400 μL methanol, the sample vortexed and
incubated at −80 °C for 20 min. Samples were centrifuged at
15,000 × g for 15 min, 4 °C. The supernatant was mixed with
300 µl H2O and 400 µl chloroform and thoroughly homogenized
for 1 min. The aqueous phase was harvested and dried by a
vacuum evaporator.

LC-MS analysis: Dried metabolites were resuspended in 50 μl
50% ACN:water. For HILIC analysis, 5 ml was loaded onto a
Luna NH2 3 μm 100 A (150 × 2.0 mm) column (Phenomenex)
using a Vanquish Flex UPLC (Thermo Scientific). The chromato-
graphic separation was performed with mobile phases A (5 mM
NH4AcO pH 9.9) and B (ACN) at a flow rate of 200 μl/min. A
linear gradient from 15% A to 95% A over 18 min was followed
by 7 min isocratic flow at 95% A and re-equilibration to 15% A.
Metabolites were detected with a Thermo Scientific Q Exactive
mass spectrometer run with polarity switching (+3.5 kV/−
3.5 kV) in full scan mode using a range of 70-975 m/z and
70.000 resolution. Maven (v 8.1.27.11) was used to quantify the
targeted polar metabolites by AreaTop, using expected retention
time and accurate mass measurements (<5 ppm) for
identification.

Data analysis, including principal component analysis and
univariate t test (two-tailed, unequal variance), correlation
analysis, heatmap generation, and circos plot visualization was
performed by R Studio and in-house scripts77.

Lipidomics. Polar lipids were measured by reversed-phase liquid
chromatography (RP-LC) coupled with untargeted high-
resolution mass spectrometric detection, with a Thermo Scien-
tific Q Exactive mass spectrometer run in polarity switching
(+3.5 kV/− 3.5 kV) in full scan mode. LC separation was per-
formed on a Phenomenex Kinetex C18 1.8 mm (100 × 2.1 mm)

UPLC column (Part number 00D-4475-AN) with a Waters UPLC
BEH guard column at 50 Celsius and 0.150 mL/min flow rate,
18 min total run time. Mobile phase gradient was as follows: (A)
0.1% formic acid in water; (B) 0.1% formic acid in acetonitrile,
starting from 1% B (0–1 min), 99% (10–15 min), 1%B
(17–18 min). Raw data were analyzed in XCMS. Significant
metabolic features were filtered by t-test significance threshold
(adjusted for multiple testing error) p < 0.01 significance, reten-
tion time >2 min, max intensity >5,000,000 counts (ESI+) or
>1,000,000 (ESI-), and fold change >2. Lipids were annotated at
the class level by accurate match (5 ppm error) with METLIN,
HMDB78,79, and by analysis of MS/MD fragmentation spectra.

Luminex assay for cytokines. Serum samples were harvested on
day 7 from infection and stored at −80 °C until analysis. Pro-
inflammatory cytokines were measured using the technologyCy-
tokine & Chemokine 36-Plex Mouse ProcartaPlex™ Panel 1 A
(Invitrogen) that enables the analysis of 36 mouse pro-
inflammatory cytokines and chemokines in a single well by
Luminex xMAP.

Luminex xMAP technology was used for readout acquisition as
described in previous work80. Statistical analysis was performed
by univariate t-testing (two-tailed, heteroschedastic distribution)
with significance threshold p < 0.05.

Tissue seahorse analysis. Respirometry assay using RIFS: tissue
homogenates were loaded into Seahorse XF96 microplates in
20 µL of MAS and centrifuged at 1500 x g for 5 min at 4 °C.
Subsequently, an additional 130 µL of MAS containing cyto-
chrome c (100 µg/ml) were added to each well and respirometry
was assessed using a Seahorse XF96 analyzer (Agilent). The fol-
lowing substrates were injected: Port A: NADH (1mM) or 5 mM
succinate + rotenone (5 mM + 2 μM); Port B: rotenone +
antimycin A (2 μM+ 4 μM); Port C: N,N,N’,N’-Tetramethyl-p-
phenylenediamine (TMPD) + ascorbic acid (0.5 mM + 1 mM);
Port D: sodium azide (50 mM). The following amounts of tissue
lysates were loaded into individual wells: Liver 4 µg, heart 2 µg,
kidney 4 µg. Mitochondrial content was assessed using Mito-
tracker™ Deep Red FM (MTDR, Thermo Fisher Scientific) was
assessed in a sister plate as previously described.

Respirometry data analysis: OCR rates were normalized by
protein amounts or MTDR signal using Wave software (Agilent)
and traces were exported to GraphPad Prism 9.4.1. Complex I, II,
and IV dependent respiration was determined after subtraction of
substrate induced respiration by antimycin A (CI, CII) or sodium
azide baselines (CIV) respectively. Normalized respiration values
were used to calculate rates of fuel preference.

Protein gel electrophoresis and immunoblotting - SDS-PAGE -
5-20 µg of total tissue lysates were loaded onto 10-well 4%-12%
Bis-Tris precast gels (ThermoFisher Scientific) and gel electro-
phoresis was performed in xCell SureLock chambers (Novex)
under constant voltage at 120 V for 80-90 min.

Blue Native gel electrophoresis: tissue lysates (100-150 µg) were
centrifuged at 10,000 × g for 10 min. Pellet containing mitochon-
dria was resuspended in 30–50 µl of MAS and protein amount
was determined by BCA. Digitonin (DIG) incubation (Liver and
Kidney, 3 mg DIG/mg protein; Heart 6 mg DIG/mg protein) was
performed on ice for 5 min and then centrifuged at 20,000 × g for
30 min as previously described81,82. 3 µL of 2.5% Coomassie
G-250 was added to the resulting supernatant, samples were
loaded onto 3-12% NativePAGE Bis-Tris precast gels (Thermo-
Fisher Scientific), and electrophoresis was performed at 4 °C in
xCell SureLock chambers under constant voltage of 20 V for
60 min followed by 200 V for 120 min.
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Immunoblotting: proteins were transferred to a methanol-
activated PVDF membrane in an xCell SureLock chamber under
100 V constant voltage for 75 min at 4 °C. For native blots,
Coomassie staining was completely removed from the membrane
using 100% methanol. All washes were done using PBST (1 mL/L
Tween-20/PBS). Blots were blocked using 5% BSA in PBST for
1 h and incubated with primary antibodies diluted in blocking
buffer overnight at 4 °C. The next day, blots were washed
3 × 5 min and incubated with secondary antibodies conjugated to
HRP in blocking buffer for 1 h at room temperature. Subse-
quently, membranes were washed 3 × 5 min and developed using
enhanced chemoluminescence solution (Millipore, WBKLS0500).
ECL signal was detected using a ChemiDoc Molecular Imager
(BioRad). Band densitometry was quantified using ImageJ Gel
Plugin (NIH). We used the following antibodies: Vinculin, from
Sigma Aldrich (V9131), mtOXPHOS cocktail (for combined
Atp5b, Uqcrc2, Mtco1 and Sdhb detection; ab110413) from
Abcam, Ndufb8 (459210) from Thermo-Fisher Biotechnology;
Uqcrc2 (14742-1-AP) from Proteintech and Tomm20 (sc-11415)
from Santa Cruz Biotechnology.

RNA sequencing. Total RNA was extracted using RNeasy Plus
Mini Kit (74134, Qiagen). Libraries were prepared by the Tech-
nology Center for Genomics & Bioinformatics at UCLA using
Illumina TruSeq Stranded Total RNA Sample Prep kit and
sequenced with 50 bp single end reads on an Novaseq S4.

Analysis of RNA sequencing data. The reads were mapped with
STAR 2.5.3a to the human genome (hg38) for the cultured
human cell libraries or mouse genome (mm10) for the mouse cell
libraries. The counts for each gene were obtained using quant-
Mode GeneCounts in STAR commands, and the other para-
meters during alignment were set to default. Differential
expression analyses were carried out using DESeq2 with default
parameters. Counts normalized by sequencing depth were
obtained using DESeq2 estimate size Factors function with default
parameters. Genes with adjusted p value < 0.05 and FC > ±1 were
considered significantly differentially expressed. Significantly up-
regulated or down-regulated genes were uploaded to the Enrichr
platform for analyses. Transcription factor regulatory network
analysis of RNA-seq data was performed by the transcriptional
factor (TF)-target interaction database Transcriptional Regulatory
Relationships Unraveled by Sentence-based Text mining
(TRRUST, v2)25. Enrichment analysis for DEGs was performed
using the DESeq2 method with FDR cutoff 0.1 and minimum fold
change 2, and gene sets from the GO Biological Process reposi-
tory. Two nodes (pathways) are connected if they share >30%
genes. Further RNA-seq analysis (e.g., principal component
analysis) was performed in iDEP.9583.

Statistics and reproducibility. All data are presented as mean ±
standard error (S.E.M.) and mentioned in the figure legends.
Statistical analysis was performed using GraphPad (Prism) soft-
ware using Student’s t test (two tailed) or ordinary one-way
ANOVA with Tukey’s multiple comparison test. A p value < 0.05
was considered statistically significant. All data were acquired
with a minimum of three biological replicates. Reproducibility of
methos was tested by a minimum of three technical replicates of
standard measurements.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
RNA-sequencing data are available in GSE243426. All other data are available in
Supplementary Data 9 and from the corresponding authors on reasonable request.
Unedited blots/gel images are available in the Supplementary Information.
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